Galacturonosyltransferase (GAUT1) and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan–galacturonosyltransferase complex

Melani A. Atmodjo,a,b Yumiko Sakuragic,d,1 Xiang Zhua,1 Amy Joy Burrella, Sushree S. Mohantya,e, James A. Atwood III,a,2 Ron Orlando3, Henrik Vibe Scheller,c,f, and Debra Mohnenab,e,3

*aComplex Carbohydrate Research Center, *Department of Biochemistry and Molecular Biology, and *BioEnergy Science Center, University of Georgia, Athens, GA 30602; Department of Plant Biology and Biotechnology and *VKR Research Centre Pro-Active Plants, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark; and *Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608

Edited* by Deborah P. Delmer, The Rockefeller Foundation, New York, NY, and approved October 19, 2011 (received for review August 16, 2011)

Plant cell wall pectic polysaccharides are arguably the most complex carbohydrates in nature. Progress in understanding pectin synthesis has been slow because of its complex structure and difficulties in purifying and expressing the low-abundance, Golgi membrane-bound pectin biosynthetic enzymes. Arabidopsis galacturonosyltransferase 1 (GAUT1) is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG), the most abundant pectic polysaccharide. We now show that GAUT1 functions in a protein complex with the homologous galacturonosyltransferase 7 (GAUT7). Surprisingly, although both GAUT1 and GAUT7 are type II membrane proteins with single N-terminal transmembrane-spanning domains, the N-terminal region of GAUT1, including the transmembrane domain, is cleaved in vivo. This raises the question of how the processed GAUT1 is retained in the Golgi, the site of HG biosynthesis. We show that the anchoring of GAUT1 in the Golgi requires association with GAUT7 to form the GAUT1–GAUT7 complex. Proteomics analyses also identified 12 additional proteins that immunoprecipitate with the GAUT1–GAUT7 complex. This study provides conclusive evidence that the GAUT1–GAUT7 complex is the catalytic core of an HG–α-1,4-galacturonosyltransferase complex and that cell wall matrix polysaccharide biosynthesis occurs via protein complexes. The processing of GAUT1 to remove its N-terminal transmembrane domain and its anchoring in the Golgi by association with GAUT7 provides an example of how specific catalytic domains of plant cell wall biosynthetic glycosyltransferases could be assembled into protein complexes to enable the synthesis of the complex and developmentally and environmentally plastic plant cell wall.

Pectin is the most structurally complex plant cell wall polysaccharide, requiring at least 67 transfers for synthesis (1, 2). It comprises ~35% of the primary wall in dicots and non-graminaceous monocots, and 2–10% in grasses (2). Pectin is a family of polysaccharides including homogalacturonan (HG), rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and xylogalacturonan, which are defined by the presence of α-D-galactopyranosyluronic acid (GalA) with sugar substituents at O-4 and O-1. Pectins have multiple functions in plant growth, development, and disease resistance including roles in cell-cell adhesion, wall porosity, cell elongation, and wall extensibility (3–6). They provide structural support in primary walls, in secondary wall formation in fibers and woody tissues, and are a reservoir of oligosaccharide signaling molecules (1, 7–9). The gelling and stabilizing properties of pectin are exploited for food enhancement and industrial purposes, and pectin has multiple health benefits including lowering cholesterol and serum glucose levels, inhibiting cancer growth and metastasis, and prebiotic function in the gut (10–13).

HG is the most abundant pectic domain, comprising ~55–70% of pectin. HG is a linear homopolymer of α-1,4-linked GalA that is partially methyl-esterified at C-6 and O-acetylated at O-2/O-3, modifications that affect pectin structure and function (3). α-1,4-Galacturonosyltransferase (GalAT; EC 2.4.1.43) catalyzes transfer of GalA from uridine-diphosphate-GalA (UDP-GalA) onto HG acceptors (14). HG–galacturonosyltransferase 1 (GAUT1) was identified by tandem mass spectrometry (MS) of Arabidopsis solubilized membrane preparations enriched for GalAT activity; transient expression in HEK293 cells; and immunoadsorption of GalAT activity from SP Sepharose-purified Arabidopsis solubilized membrane fractions (SP fraction) using anti-GAUT1 antibodies (15). GAUT1 encodes a protein of 673 amino acids (aa), predicted mass of 77.4 kDa, pI of 9.95, and type II transmembrane topology, consistent with Golgi localization of GAUT1 and HG–GalAT activity (16, 17). GAUT1 belongs to glycosyltransferase (GT) family 8 and the Arabidopsis GAUT1-related superfamily of 15 GAUT and 10 GAUT-like genes (15, 18–20).

GAUT7, another GAUT family member, was the only predicted GT that copurified with GAUT1 in GalAT-enriched detergent-solubilized Arabidopsis membrane proteins from suspension culture cells (15). Despite 36% aa sequence identity to GAUT1, GAUT7 had no HG–GalAT activity when transiently expressed in HEK293 cells (15), raising the question of whether GAUT7 functions in a biosynthetic complex with GAUT1. Here we show that Arabidopsis GAUT1 and GAUT7 form a GalAT–GAUT1–HG–GalAT complex and that GAUT1 anchors a proteolytically processed form of GAUT1 in the Golgi.

Results and Discussion

GAUT7 Associates with GAUT1 in an HG–GalAT Complex. Polyclonal antibodies against amino acid positions 82–103 of Arabidopsis GAUT7 predicted stem region recognized a broad doublet band of ~75 kDa, confirmed to be GAUT7 by MS sequencing (Fig. L4 and Fig. S1 B and D). Immunoadsorption of GAUT7 from the Arabidopsis SP fraction using anti-GAUT7 antibodies caused an antibody-dependent depletion of GalAT activity from the supernatant and recovery of GalAT activity in the anti-GAUT7-immunoadsorbed pellet (Fig. S1A). The results suggested that GAUT7 was either a GalAT or part of a GalAT complex. Protein complexes involved in N-linked glycoprotein, glycolipid, and proteoglycan syntheses have been reported (21) and demonstrated or suggested in plant starch, cellulose, and hemicellulose syntheses (22–24). However, molecular analysis of a plant wall matrix polysaccharide biosynthetic complex has not been reported. To test whether GAUT7 exists in a GalAT complex with GAUT1, independent anti-GAUT1– and anti-GAUT7–immunoadsorbed proteins were separated by reducing SDS/PAGE and

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

1Y.S. and X.Z. contributed equally to this work.

2Present address: NuSep, Inc., Bogart, GA 30622.

3To whom correspondence should be addressed. E-mail: dmohnen@ccr.uga.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1112816108/-/DCSupplemental.
analyzed by immunoblotting using anti-GAUT1 and anti-GAUT7 sera. *Arabidopsis* GAUT1 and GAUT7 coimmunoprecipitated from the SP fraction (Fig. 1 A and Fig. S1), demonstrating biochemically that GAUT1 and GAUT7 exist in a protein complex. Because protein colocalization within the same cellular subcompartment is a prerequisite for complex formation, we used bi-molecular fluorescence complementation (BiFC) (25) to test for GAUT1 and GAUT7 colocalization in the Golgi. Transient expression in tobacco (*Nicotiana benthamiana*) leaves of GAUT7 fused to full-length YFP yielded punctate signals overlapping with those of the Golgi marker STIMd-GFP (26) (see below) and indicating Golgi localization of GAUT7. GAUT1 fused to full-length GFP was also tested, but did not give any signals (see below). Fluorescence complementation with characteristic Golgi signal morphology was observed upon transient coexpression of GAUT1 and GAUT7, each fused to complementary split halves of YFP (Fig. 1 B and C). Neither GAUT1 nor GAUT7 constructs complemented fluorescence with ARAD1-Yn [ARABINAN DEFICIENT 1 (27)], whereas the positive control ARAD1-Yn/ARAD1-Yc did fluoresce (Fig. 1 F–H). Coexpression of GAUT1-Yn/GAUT1-Yc yielded no signal (Fig. 1D), whereas that of GAUT7-Yn/GAUT7-Yc gave variable fluorescence (Fig. 1E). The specific fluorescence complementation between GAUT1 and GAUT7 confirms that these proteins colocalize within a specific Golgi subcompartment and supports their association in a protein complex.

To determine whether GAUT1 and GAUT7 are coexpressed in *Arabidopsis*, we analyzed *Arabidopsis* gene expression databases and GAUT1 and GAUT7 promoter–GUS construct expression in transgenic *Arabidopsis*. Microarray data (https://www.genecat.mpg.de) [Gene Expression Analysis Toolbox (http://genecat.mpg.de)] and *Arabidopsis* Co-Expression Analysis Tool (http://www.cressexpress.org), respectively (see below). Promoter–GUS fusions (Fig. 1 I–M) indicate high expression of both genes in meristematic regions, vascular tissues, and reproductive organs, and support a role for both proteins in primary and secondary wall syntheses. Extensive coexpression was observed in seedling cotyledon tips and vasculature, leaf primordia and outer edges of young leaves, and 6- to 8-wk-old plant cambium, phloem, epidermis, cortex, stem metaxytem and protoxylem, anthers, pollen, floral distal stigma, and root vascular cambium and phloem. The coexpression of GAUT1 and GAUT7 is consistent with their function in a protein complex.

The immunoprecipitated GAUT1–GAUT7 complex (Fig. 1 A and Fig. S1) transfers GaLA from UDP-GaLA onto HG oligosaccharide (oligogalacturonide; OGA) acceptors, similar to the reported GalAT activity in solubilized membrane preparations (14). To test whether the GAUT1–GAUT7 complex transfers GaLA onto RG-I and/or RG-II acceptors, substrate specificity was examined by comparing OGAs of degrees of polymerization (DP) 7–23; RG-I backbone oligomers of DP 6–26 with either a rhamnosyl residue (RG-I-R) or a GalA residue (RG-I-G) at the non-reducing end; and RG-II monomer. Fig. 2 shows that the immunoprecipitated GAUT1–GAUT7 complex, as well as GalAT activity in the *Arabidopsis* SP fraction, is highly selective for OGAs, verifying the GAUT1–GAUT7 complex as HG–GalAT.

GAUT1–GAUT7 Complex Is Held Together by Both Covalent and Noncovalent Interactions. Some GT complexes are known to contain disulfide bonds (29). We tested whether GAUT1 and GAUT7 associated via disulfide bonds by separating proteins from the *Arabidopsis* SP fraction on reducing versus nonreducing SDS/PAGE followed by Western blotting (Fig. 2B). GAUT1 and GAUT7 migrated as monomers when separated by reducing SDS/PAGE (~60 kDa for GAUT1; ~75 kDa for GAUT7).
However, both proteins resolved at a similar (~185 kDa) high molecular weight (HMW) upon nonreducing SDS/PAGE, suggesting that GAUT1 and GAUT7 are held together by an intermolecular disulfide bond(s) in a common heterocomplex. To confirm that disulfide bonding indeed held GAUT1 and GAUT7 in a heterocomplex, we performed immunoprecipitation of the GAUT1–GAUT7 complex from the Arabidopsis SP fraction pretreated with denaturing agents, a reducing agent, or both denaturing and reducing agents (Fig. 2C). The GAUT1–GAUT7 complex remained intact under denaturing or reducing conditions alone, but dissociated when both denaturing and reducing agents were present. This result establishes covalent intermolecular disulfide bonding between GAUT1 and GAUT7, whereas noncovalent interactions may reinforce the integrity of the disulfide-bonded complex.

Proteomics Analyses Establish GAUT1 and GAUT7 as Components of the GAUT1–GAUT7 Core Complex and Identify Putative Interacting Proteins. We used repetitive high-stringency proteomics to identify components of the GAUT1–GAUT7 complex held together by covalent and noncovalent interactions (outlined in Fig. S2; Table 1). The complex was immunoprecipitated independently using antigen-purified anti-GAUT1- and anti-GAUT7–specific IgGs, each covalently attached to magnetic beads. After stringent washing, the immunoprecipitants were eluted from the beads and resolved by SDS/PAGE (Materials and Methods).

To examine the minimal, disulfide-bonded GAUT1–GAUT7 complex, stable upon nonreducing SDS/PAGE, the ~185-kDa protein band of the GAUT1–GAUT7 core complex was excised from the gel (Fig. S3A), in-gel trypsin-digested, and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). GAUT1 and GAUT7 were the only two proteins identified by LC-MS/MS in each independent anti-GAUT1– and anti-GAUT7–specific IgG immunoprecipitant (IP-GAUT1 and IP-GAUT7, respectively; Table S1 and Dataset S1). Neither GAUT1 nor GAUT7 was detected in the preimmune IgG immunoprecipitation control (IP-control). The results establish that the nonreducing SDS/PAGE-stable complex consists only of GAUT1 and GAUT7. Based on the size of the complex observed in nonreducing SDS/PAGE and the normalized spectral abundance factor (NSAF) values of GAUT1 and GAUT7 from the LC-MS/MS data (Table S1), the GAUT1–GAUT7 core complex is likely to be a trimeric complex consisting of two GAUT1 subunits (each 58.6-kDa; see next section) and one GAUT7 subunit (69.7-kDa).

We reasoned that the minimal, disulfide-bonded GAUT1–GAUT7 complex may be a core complex associating noncovalently with additional proteins to form a larger pectin synthesis complex, for example with methyltransferases to synthesize methylated HG. Indeed, the size of detergent-solubilized galacturonic acid synthase (synonymous with HG-GaLaT) from azuki bean was estimated as ~590 kDa (30). To test for possible GAUT1–GAUT7 core complex-associating proteins, eluted immunoprecipitants were resolved by reducing SDS/PAGE and analyzed by LC-MS/MS (Table S2 and Dataset S1). Because preliminary data showed immunoprecipitated proteins from ~50 to 125 kDa, we focused on these for the proteomics analyses (Fig. S3B). Ten proteins, including GAUT1 and GAUT7, were consistently identified in each IP-GAUT1 and IP-GAUT7 immunoprecipitant, but not in the IP-control (using preimmune IgG), as putative GAUT1–GAUT7 core complex-interacting proteins (Fig. S3C).

Four additional proteins were more than fourfold more abundant in IP-GAUT1 and IP-GAUT7 than in the IP-control (Table S2 and SI Results and Discussion). The 14 proteins, including GAUT1 and GAUT7, represent the GAUT1–GAUT7 core complex and its putative associating proteins (Table 1). Although it remains possible that all or some of the 14 proteins form a large holocomplex, the relatively low NSAF values of the 12 additional proteins compared with GAUT1 and GAUT7 suggest they may transiently interact with the GAUT1–GAUT7 core complex.

Several GAUT1–GAUT7 core complex putative associating proteins are noteworthy. The two dehydration-resistant proteins (AT4G18030, AT4G00740) contain a putative methyltransferase domain (DUF240; InterPro IPR004159) and have homology (30–37% aa sequence identity, 47–55% similarity) to QUAG, a putative homogalacturonan-methyltransferase (HG-MT) (31). Recently, AT4G00740 has also been proposed as a putative HG-MT, designated QUAD3 (32). AT4G18030 and AT4G00740 have been localized to the Golgi (17), as has HG-MT activity (33), and are coexpressed with GAUT1 and GAUT7 (Table S3). These results support the proposition that methylation of HG occurs as it is synthesized, or immediately thereafter (1, 2). The presence of KORRIGAN1 (KOR1; AT5G49720), a membrane-bound endo-1,4-b-glucanase implicated in cellulose biosynthesis (22), as a GAUT1–GAUT7 core complex putative associating protein warrants further investigation. KOR1 mutants are dwarf, defective in cell elongation, and have reduced wall crystalline cellulose that is compensated by increased pectin (34). KOR1 localizes to a heterogeneous population of intracellular compartments including the Golgi (22). Perhaps most intriguingly, two homologs of mammalian ribophorins I and II (AT1G76400 and AT4G21150, respectively) are among the putative GAUT1–GAUT7 core complex-interacting proteins. These ribophorins are subunits of oligosaccharidyltransferase, an enzyme complex that transfers oligosaccharides en bloc from
Table 1. The GAUT1–GAUT7 GaAT core complex and putative associating proteins as revealed by proteomics analyses of the immunoprecipitated complex

<table>
<thead>
<tr>
<th>Protein ID</th>
<th>Gene ID</th>
<th>Sequence name</th>
<th>Protein length (aa)</th>
<th>Protein mass (kDa)</th>
<th>Total protein probability</th>
<th>Total score</th>
<th>Total spectra</th>
<th>NSAF value*</th>
<th>Corrected NSAF value†</th>
<th>Total protein probability</th>
<th>Total score</th>
<th>Total spectra</th>
<th>NSAF value*</th>
<th>Corrected NSAF value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP_191672.1</td>
<td>At3g61130</td>
<td>GAUT1/LGT1 (Galacturonosyltransferase 1)</td>
<td>673</td>
<td>77.31</td>
<td>1</td>
<td>530.98</td>
<td>19</td>
<td>0.555</td>
<td>0.625</td>
<td>1</td>
<td>256.18</td>
<td>8</td>
<td>0.434</td>
<td>0.583</td>
</tr>
<tr>
<td>NP_565893.1</td>
<td>At2g38650</td>
<td>GAUT7/LGT7 (Galacturonosyltransferase 7)</td>
<td>619</td>
<td>69.69</td>
<td>1</td>
<td>362.67</td>
<td>14</td>
<td>0.445</td>
<td>0.375</td>
<td>1</td>
<td>196.85</td>
<td>7</td>
<td>0.417</td>
<td>0.417</td>
</tr>
<tr>
<td>NP_191672.1</td>
<td>At3g61130</td>
<td>GAUT1/LGT1 (Galacturonosyltransferase 1)</td>
<td>673</td>
<td>77.31</td>
<td>1</td>
<td>1573.58</td>
<td>122</td>
<td>0.073</td>
<td>0.095</td>
<td>1</td>
<td>2013.38</td>
<td>228</td>
<td>0.047</td>
<td>0.061</td>
</tr>
<tr>
<td>NP_565893.1</td>
<td>At2g38650</td>
<td>GAUT7/LGT7 (Galacturonosyltransferase 7)</td>
<td>619</td>
<td>69.69</td>
<td>1</td>
<td>1372.61</td>
<td>167</td>
<td>0.111</td>
<td>0.107</td>
<td>1</td>
<td>1668.63</td>
<td>327</td>
<td>0.072</td>
<td>0.071</td>
</tr>
<tr>
<td>NP_176170.1</td>
<td>At1g59610</td>
<td>ADL3 (ARABIDOPSIS DYNAMIN-LIKE 3)</td>
<td>920</td>
<td>100.15</td>
<td>1</td>
<td>973.23</td>
<td>48</td>
<td>0.020</td>
<td>0.021</td>
<td>1</td>
<td>1083.70</td>
<td>64</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>NP_177766.1</td>
<td>At1g76400</td>
<td>Ribophorin I family protein</td>
<td>614</td>
<td>68.58</td>
<td>1</td>
<td>780.90</td>
<td>41</td>
<td>0.026</td>
<td>0.026</td>
<td>1</td>
<td>980.38</td>
<td>143</td>
<td>0.032</td>
<td>0.031</td>
</tr>
<tr>
<td>NP_172000.1</td>
<td>At1g10290</td>
<td>ADL6 (DYNAMIN-LIKE PROTEIN 6)</td>
<td>914</td>
<td>99.09</td>
<td>1</td>
<td>736.39</td>
<td>36</td>
<td>0.015</td>
<td>0.016</td>
<td>1</td>
<td>1000.20</td>
<td>68</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>NP_193537.2</td>
<td>At4g18030</td>
<td>Dehydration-responsive family protein</td>
<td>621</td>
<td>70.27</td>
<td>1</td>
<td>721.96</td>
<td>25</td>
<td>0.016</td>
<td>0.016</td>
<td>1</td>
<td>612.05</td>
<td>42</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>NP_193847.2</td>
<td>At4g21150</td>
<td>Ribophorin II (RPN2) family protein</td>
<td>691</td>
<td>74.60</td>
<td>1</td>
<td>641.43</td>
<td>19</td>
<td>0.011</td>
<td>0.011</td>
<td>1</td>
<td>1098.01</td>
<td>65</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>NP_190258.1</td>
<td>At3g46740</td>
<td>TOC75-III (translocon outer-membrane complex 75-III)</td>
<td>818</td>
<td>89.12</td>
<td>1</td>
<td>608.83</td>
<td>28</td>
<td>0.014</td>
<td>0.013</td>
<td>1</td>
<td>747.03</td>
<td>49</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>NP_186956.2</td>
<td>At3g30600</td>
<td>ATPase</td>
<td>628</td>
<td>69.51</td>
<td>1</td>
<td>541.41</td>
<td>30</td>
<td>0.019</td>
<td>0.019</td>
<td>1</td>
<td>513.82</td>
<td>58</td>
<td>0.013</td>
<td>0.012</td>
</tr>
<tr>
<td>NP_179673.1</td>
<td>At2g20800</td>
<td>NDB4 (NAD(P) DEHYDROGENASE B4) family protein</td>
<td>582</td>
<td>65.31</td>
<td>1</td>
<td>487.12</td>
<td>17</td>
<td>0.011</td>
<td>0.012</td>
<td>1</td>
<td>1093.47</td>
<td>117</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>NP_565435.1</td>
<td>At2g18330</td>
<td>AAA-type ATPase family protein</td>
<td>636</td>
<td>71.13</td>
<td>1</td>
<td>423.99</td>
<td>36</td>
<td>0.023</td>
<td>0.022</td>
<td>1</td>
<td>765.71</td>
<td>105</td>
<td>0.023</td>
<td>0.022</td>
</tr>
<tr>
<td>NP_188616.1</td>
<td>At3g19820</td>
<td>DWF1 (DIMINUTO 1)</td>
<td>561</td>
<td>65.33</td>
<td>1</td>
<td>409.62</td>
<td>15</td>
<td>0.010</td>
<td>0.011</td>
<td>1</td>
<td>901.14</td>
<td>112</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>NP_567184.1</td>
<td>At4g00740</td>
<td>Dehydration-responsive protein-related</td>
<td>600</td>
<td>67.49</td>
<td>1</td>
<td>385.40</td>
<td>13</td>
<td>0.009</td>
<td>0.009</td>
<td>1</td>
<td>549.74</td>
<td>36</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>NP_199783.1</td>
<td>At5g49720</td>
<td>KOR1 (KORRIGAN)</td>
<td>621</td>
<td>69.13</td>
<td>1</td>
<td>229.31</td>
<td>9</td>
<td>0.006</td>
<td>0.006</td>
<td>1</td>
<td>243.22</td>
<td>15</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Proteomics analyses were conducted on multiple independent sets of immunoprecipitations performed using anti-GAUT1–IgG (IP-GAUT1), anti-GAUT7–IgG (IP-GAUT7), and preimmune IgG (IP-control) (see details in SI Text). GAUT1 and GAUT7 are the only identified components of the nonreducing SDS/PAGE-stable core complex, whereas 14 proteins, including GAUT1 and GAUT7, constitute the GAUT1–GAUT7 GaAT complex and its putative associating proteins. Data shown are proteins reproducibly identified in both IP-GAUT1 and IP-GAUT7, and not in IP-control, based on probability analysis. The putative associating proteins also include those more than fourfold more abundant in IP-GAUT1 and IP-GAUT7 compared with IP-control. Proteins are listed based on total protein scores in the IP-GAUT1 datasets. Total probability: the estimate of the likelihood that the protein assignment is correct based on the peptide probabilities for the identified peptides mapping to the protein. Total score: the sum of the peptide scores (Mascot ion scores) for all peptides matching to a protein. Total spectra: the sum of all spectra generating peptide identifications to a given protein, that is, the number of redundant protein spectra. *NSAF values are protein normalized spectral counts, calculated as the number of spectral counts for protein X (SpC) divided by the number of amino acids in protein X (L) divided by the sum of SpC/L for all proteins in the experimental dataset. †Corrected NSAF values were calculated based on the size of the cleaved GAUT1, that is, 506-aa long.
dolichol pyrophosphates onto proteins as they translocate into the endoplasmic reticulum (ER) lumen (35). The identification of the ribophorins raises the possibility that biosynthesis of HG, or of pectin in general, may occur by en bloc transfer of oligosaccharide domains to a growing polysaccharide.

GAUT1 Is Posttranslationally Cleaved. *Arabidopsis* GAUT1 is predicted to be a 77.4-kDa protein, yet always resolved at ~60 kDa (15) (Figs. 1A and 2B and Fig. S1). We proposed that the discrepancy between the predicted and observed sizes of GAUT1 was the result of posttranslational proteolytic processing in planta. This was tested using three independent anti-GAUT1 antibodies, reactive against GAUT1 amino acid positions 132–154, 341–365, and 448–472 (ref. 15 and this paper). Whereas all three antibodies detected recombinant GAUT1 expressed in HEK293 cells (15), only the antibodies generated against amino acids 341–365 and 448–472 recognized GAUT1 in immunoblots of the *Arabidopsis* SP fraction (Fig. S4), suggesting that *Arabidopsis* GAUT1 is proteolytically cleaved in vivo in the N-terminal region.

N-terminal sequencing of GAUT1 excised from a reducing SDS/PAGE-blotted membrane yielded the peptide sequence RANELVO, indicating a cleavage between Met167 and Arg168 that yields a processed *Arabidopsis* GAUT1 of 58.6 kDa and pI of 9.3, consistent with the observed characteristics of GAUT1 in the SP fraction. The cleavage site was also supported by LC-MS/MS analyses of immunoprecipitated GAUT1–GAUT7 complex, which gave no GAUT1 peptide sequence N-terminal to Ala169 (Fig. S3 C and D). The GAUT1 aa sequence surrounding this proposed cleavage site is consistent with the consensus motif ([R/K]–[X]n–[R/K], n = 0, 2, 4, or 6) recognized by subtilisin-like proprotein convertases in the secretory pathway (36). Proteolytic cleavage at stem regions by secretory pathway proteases has been documented with many other GTs (29, 37). Whereas the resulting soluble, truncated GTs are typically secreted out of the cell, the N-glycosylation enzyme GlcNAcT-I was reported cleaved but retained in the Golgi via inclusion in HMW oligomers mediated by its luminal domain (38). GAUT1 cleavage *in planta* could activate the enzyme, as described for *Arabidopsis* and tobacco type I pectin methylesterases (39), or could facilitate specific GAUT1 and GAUT7 association to form the GAUT1–GAUT7 core complex and/or a larger, fully functional pectin biosynthetic complex.

Fig. 3. Golgi retention of cleaved GAUT1 relies on the presence of GAUT7. (A–F) Transient coexpression of GAUT1-GFP and GAUT7-YFP in *N. benthamiana* leaves. (F, Inset) Mean pixel intensity is plotted from each Golgi in the GFP versus YFP channels (detected by sequential scanning), showing Golgi signals in GAUT7-YFP individual expression experiments (◇) and GAUT1-GFP/GAUT7-YFP coexpression experiments (◆). The Inset reveals that GFP signals detected upon GAUT1-GFP/GAUT7-YFP coexpression (◇) are caused by the Golgi accumulation of GAUT1-GFP in the presence of GAUT7-YFP, and not to background signal from GAUT7-YFP (◇). Results were verified in at least three independent experiments. (G–M) Transient expression of C-terminally truncated GAUT1-GFP fusion constructs (G) in the absence (H–J) or presence (K–M) of GAUT7. GAUT1-GFP, full-length GAUT1 fused to GFP; GAUT1(100)-GFP, first 100 aa of GAUT1 fused to GFP; GAUT1(291)-GFP, first 291 aa of GAUT1 fused to GFP.
GAUT1 is Dependent on GAUT7 for Retention in the Golgi. A cleavage between Met167 and Arg168 would render GAUT1 devoid of its transmembrane domain (TMD) and thus secreted out of the cell unless a tethering mechanism retained it in the Golgi. We hypothesized that interaction with GAUT7 retained GAUT1 in the Golgi. To test this, GAUT1-GFP and GAUT1-YFP constructs were individually and coexpressed in tobacco leaves. When individually expressed, GAUT1-GFP did not yield a Golgi signal (Fig. 3A), whereas GAUT1-YFP did (Fig. 3C). However, when coexpressed, accumulation of GAUT1-GFP in the Golgi overlapped with GAUT1-YFP signal (Fig. 3D–F). GAUT1-GFP also accumulated in the Golgi when coexpressed with nontagged GAUT7 (Fig. 3H and K). The results demonstrate that retention of GAUT1 in the Golgi requires the presence of GAUT7, and suggest that GAUT7 acts as a membrane anchor for GAUT1.

To further explore the GAUT1 tethering mechanism, three GAUT1-GFP fusion constructs (Fig. 3G) were transiently expressed in tobacco with and without coexpressed nontagged GAUT7. The constructs were (i) GAUT1-GFP (GAUT1 full-length), (ii) GAUT1(100)-GFP containing only the first 100 aa of GAUT1 including the predicted TMD but not the proposed cleavage site, and (iii) GAUT1(291)-GFP containing the first 291 aa of GAUT1 including both the predicted TMD and cleavage site but not the first cysteine beyond the predicted TMD (Cys292). Transient expression of GAUT1-GFP yielded GAUT7-dependent fluorescence accumulation in Golgi (Fig. 3H and K and Fig. S5 B–E). In contrast, despite the absence or presence of GAUT7, GAUT1(100)-GFP yielded a broad labeling pattern, including ER and punctate Golgi-like structures (Fig. 3 I and L), whereas GAUT1(291)-GFP accumulated no observable signal (Fig. 3J and M and Fig. S5 B–E). GAUT1(100)-GFP seems sufficient to target the protein to the secretory pathway but does not provide Golgi-specific localization. GAUT1(291)-GFP, however, likely underwent proteolytic cleavage, releasing the C-terminally located GFP from the membrane and resulting in secretion into the apoplast, where GFP generates weak or no fluorescence because of the low-pH environment (40). The results indicate a cleavage site between amino acids 100 and 291, consistent with the proposed cleavage site between Met167 and Arg168, suggest the importance of disulfide bonding between GAUT1 and GAUT7 to retain GAUT1 in the Golgi, and indicate a region downstream of amino acid 291 in GAUT1 as required for specific protein–protein interactions between GAUT1 and GAUT7.

Model for the GAUT1–GAUT7 HG–GalAT Core Complex. Based on all of the data presented, we propose a heterotrimeric model for the GAUT1–GAUT7 core complex (Fig. 4) of GAUT1 and GAUT7 held together by a covalent disulfide bond(s) and other noncovalent interactions. GAUT1 and GAUT7 each contain eight cysteine residues (two and six in the TMD and luminal region, respectively). One or more of these is proposed to function in disulfide bond formation. GAUT1 is the catalytic subunit (15) of the GAUT1–GAUT7 HG–GalAT complex. GAUT7 functions, at least in part, to anchor GAUT1 to the Golgi membrane. Interestingly, it was reported that GAUT7 carries an amino acid substitution in a proposed catalytic residue that would render it noncatalytic (20). This proposition needs experimental verification, but is consistent with a GAUT1-anchoring, noncatalytic role for GAUT7.

Heterocomplex formation of closely related GTs has been shown to have functional significance. For example, proper folding of the mammalian O-glycosylation enzyme C1[3,1-GaLT in the ER requires complex formation with the homologous (22% identity) type II transmembrane protein Cosmic (41), whereas complex formation of human protein O-type O-glycosylation enzymes POMT1 and POMT2 (36% identity) is necessary for enzymatic activity of otherwise inactive subunits (42). Heterocomplex formation of the heparan sulfate biosynthetic enzymes EXT1 and EXT2 (35% identity) results in a Golgi-localized enzyme complex with significantly higher GlcNAcT/GlcAT activities than those of the individual components and with a polymerizing capability (43). It is plausible that the GAUT1–GAUT7 complex may have substantially higher catalytic and/or polymerizing activities compared with the individual subunits. The work reported here indicates that pectin HG synthesis occurs via tethering of a GalAT catalytic subunit (GAUT1) to the Golgi membrane-bound protein anchor (GAUT7). How widespread this phenomenon is in the synthesis of cell wall polysaccharides remains to be determined. It is interesting to speculate, however, that Golgi-tethering proteins, such as GAUT7, may play a broader role in promoting the association of GTs and polysaccharide-modifying enzymes (such as methyltransferases) into complexes to achieve the synthesis of specific wall polysaccharide domains. In this regard, it is noteworthy that multiple GAUT7 homologs exist in the grass family (20), suggesting a unique role for GAUT7-like proteins in grasses. Further studies of the GAUT1–GAUT7 core complex and its association with other proteins are likely to expand our view of diverse GTs and polysaccharide-modifying enzymes interact to produce cell type- and developmental stage-specific wall polymers.

Materials and Methods

Immunoprecipitation. Anti-GAUT1 polyclonal antibodies were previously generated (15). Anti-GAUT7 antibodies were generated similarly using multiple antigenic peptides corresponding to GAUT7 amino acids 82–103 (DEVLQKINPVLPKKSDINVGSR). For communoprecipitation of GAUT1 and GAUT7, 10% v/v of anti-GAUT1 or anti-GAUT7 antibody-conjugated Dynabeads M-280 sheep anti-rabbit IgG (as described in ref. 15) were incubated with 500 μL SP fraction (SI Materials and Methods). Immunoadsorbed materials were washed twice in PBS, three times in buffer A [50 mM Hepes, pH 7.3, 0.25 mM MnCl2, 2 mM EDTA, 25% (vol/vol) glycerol, 1% (vol/vol) Triton X-100], and once in PBS. PBS washes were done to remove nonspecific interactors and to lower the Triton X-100 concentration below the critical micelle concentration to remove nonspecific proteins that may have associated via detergent micelles. Buffer A washes removed nonspecific, hydrophobically interacting proteins. Immunoprecipitants were analyzed by Western blotting with anti-GAUT1 and anti-GAUT7 sera (dilutions of 1:3,000 and 1:10,000, respectively). Immunoprecipitations for acceptor substrate specificity studies and of the SP fraction pretreated with denaturing and/or reducing conditions were as above, except that antibody beads and the SP fraction were incubated at 1:1 and 1:2 ratios (vol/vol), respectively.

GalAT Activity Assay for Substrate Specificity Studies. GalAT activity was measured as described (14) using size-specific HG, RG-I, and RG-II acceptors (see SI Materials and Methods for details).

BIFC and Coexpression of GAUT1 and GAUT7 Fused to Fluorescent Proteins. Bacterial strains, growth conditions, plasmid constructions, transfection of N. benthamiana, and settings for confocal microscopy are detailed in SI Materials and Methods.

Proteomics Analyses of the GAUT1–GAUT7 Complex. The experimental scheme is presented in Fig. S2. Independent experiments were done twice and three
times for studies of the nonreducing SDS/PAGE-stable core complex and the complex-associating proteins, respectively. In each independent proteomics experiment, three immunoprecipitations were carried out: IP-GAUT1, IP-GAUT7, and IP-control (using anti-GAUT1-specific IgG, anti-GAUT7-specific IgG, and total preimmune IgG, respectively). Antigen-purified specific IgGs (SI Materials and Methods) were covalently attached to Dynabeads M-270 Epoxy (Invitrogen) (450 μg IgG per 22.5 mg beads). Immunoprecipitation was done by incubating IgG beads with 1.5 mL Arabidopsis Sp fraction for 2 h at 4°C with end-to-end rotation, followed by stringent washing (Immunoprecipitation). Immunoassay for bead proteins were eluted using 675 μL of 100 mM glycine (pH 2.5) and neutralized by adding 75 μL of 1 M Tris (pH 9.0). The procedure was repeated with the same IgG beads using fresh Sp fraction (total of four and three times for the core complex and the complex-associating proteins, respectively. Pooled eluted protein from each treatment was concentrated, and separated by 7.5% SDS/ PAGE using nonreducing and reducing conditions to study the core complex and the complex-associating proteins, respectively. In-gel trypsin digestion and LC-MS/MS analyses are detailed in SI Materials and Methods. ProtocolQ version 1.5.0 software (http://www.nusep.com) was used to analyze the protein and peptide identifications by separately using two statistical algorithms on board the software, namely the false-discovery rate and the probability methods (procedures and parameters are detailed in SI Materials and Methods). Further information is provided in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Drs. Jae-Min Lim and Lance Wells for LC-MS/MS verification of GAUT1 and GAUT7; Drs. Alan Darvill, Michael Hahn, and Geert-Jan Boors for critical reading of the manuscript; Sarah Irwood, Carl Bergmann, and Henk Schols for gifts of enzymes; and Malcolm O’Neill for RG-II monomer. This work was supported by National Research Initiative, Cooperative State Research, Education, and Extension Service, US Department of Agriculture (USDA) Awards 2003-35318-15377 and 2006-35318-17301; USDA AFRI 2010-65115-20396; and in part by US Department of Energy (DOE) Contract DE-AC02-05CH11231, the Danish Agency for Science, Technology and Innovation, The Villum Kann Rasmussen Foundation, DOE Center Grant DE-FG02-09ER20097, and BioEnergy Science Center Grant DE-PS02-06ER64304. The BioEnergy Science Center is a US DOE BioEnergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

