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ABSTRACT The use of nondestructive NMR spectroscopy for enzymatic studies offers unique opportunities to identify nearly
all enzymatic byproducts and detect unstable short-lived products or intermediates at the molecular level; however, numerous
challenges must be overcome before it can become a widely used tool. The biosynthesis of acetyl-coenzyme A (acetyl-CoA)
by acetyl-CoA synthetase is used here as a case study for the development of an analytical NMR-based time-course assay
platform. We describe an algorithm to deconvolve superimposed spectra into spectra for individual molecules, and further
develop a model to simulate the acetyl-CoA synthetase enzyme reaction network using the data derived from time-course
NMR. Simulation shows indirectly that synthesis of acetyl-CoA is mediated via an enzyme-bound intermediate (possibly
acetyl-AMP) and is accompanied by a nonproductive loss from an intermediate. The ability to predict enzyme function based
on partial knowledge of the enzymatic pathway topology is also discussed.

INTRODUCTION

Biological systems are inherently dynamic systems that
evolve, or sometimes exist at near steady-state conditions,
at the expense of pools of energy-supplying substrates.
Understanding these systems at the metabolic level is a
fundamental problem in kinetic analysis. Although the
study of the reaction kinetics of a single enzyme is a well-
established field, application to biological systems is not,
and appropriate methodologies for studying these more-
complex systems are still evolving. Such methodologies
should work at single-enzyme, multienzyme, and (eventu-
ally) whole-cell levels. The difficulties of capturing a
process without interfering in it (e.g., stopping the enzy-
matic reaction by tissue maceration) and finding a reason-
ably sensitive method to monitor the system present
additional challenges. Real-time NMR offers a possible
means of meeting these challenges. NMR is a quantitative,
nondestructive diagnostic tool that is commonly used to
determine molecular structure with minute structural detail.
The ability to obtain quantitative information on concentra-
tions and identify a wide range of compounds is important
for metabolic applications. The ubiquitous occurrence of
protons in metabolites and the direct correlation of their
signal intensity with concentration makes proton NMR
especially useful. Although it is inherently a less sensitive
method than mass spectrometry, advances in field strength,
cryoprobe technology, and more efficient acquisition
methods have reduced the sensitivity limitations of this
methodology. Proton-NMR is currently capable of moni-
toring small (10 mM) metabolites on the timescale of a
few minutes. However, taking advantage of the wealth of

data that can be obtained requires parallel improvements
in data-reduction and kinetic-modeling methods.

Of course, NMR has numerous applications for moni-
toring enzymatic reactions at various levels of complexity
(1–3). Although a few recent studies have examined pro-
filing changes in whole cellular systems (4–6), most studies
have focused on enzyme systems with small numbers of
well-defined substrates and products. In these cases, most
peaks corresponding to the molecular species of interest
are well resolved and can be individually integrated to
obtain time courses for variations in substrate and product
concentrations. However, as systems become more com-
plex, the NMR spectra become more complicated, with
hundreds of crowded peaks. Often NMR peaks belonging
to structurally similar molecules overlap, and it is a major
challenge to deconvolve spectra into sets of peaks represent-
ing individual molecular species. We recently explored the
use of real-time 1H-NMR-based assays and found it to be
a powerful method for diagnosing enzyme reactions, espe-
cially when intermediates in enzyme reactions have a short
lifespan (2). However, before such a method can routinely
be used with many enzymes (and ultimately whole cells),
two other major challenges must be overcome: 1), we
must be able to deconvolve superimposed spectra into
spectra for individual molecular species and monitor the
time course of concentrations of each molecular species;
and 2), we must be able to simulate enzymatic network
topologies in such a way that encompasses the correct
pathway and allows identification of that pathway.

The successful use of quantitative 1H NMR usually
depends on the identification of one or several well-isolated
peak(s) from superimposed spectra for each component
and the selection of proper NMR acquisition and processing
parameters (e.g., sufficiently long relaxation times to
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achieve equilibrium of magnetization) (7,8). Before quanti-
tative 1H NMR can be applied to more-complicated systems
with fewer isolated peaks, a better approach that can deal
with overlapping peaks and remain quantitative even when
optimal data acquisition parameters cannot be used must
be developed.

Chemical reaction networks provide a natural language
for describing the mechanistic details of an enzymatic
pathway and the interactions between multiple pathways
in complex multienzyme systems. The time evolution of
metabolite concentrations in such systems profoundly
depends on, and is therefore informative about, the under-
lying network topology. It is straightforward to predict the
time evolution, given the network topology and its kinetic
reaction rate coefficients, by solving the network’s kinetic
rate equations. However, the inverse problem of reconstruct-
ing the network, and hence the mechanistic details of the
pathway from time-series data, presents major challenges
even if the data are complete, dense, and free of noise. In
real metabolic time-series experiments, the mechanistic
network information is obscured further by the incomplete-
ness, sparsity, and noise of the data. Relevant network
models, even for fairly simple single-enzyme systems, are
rich in unknown model parameters, such as rate coefficients
and initial conditions, which are poorly constrained by the
incomplete, sparse, and noisy data. The ensemble network
simulation (ENS) method (9–11) was developed to deal
with this ubiquitous problem of incomplete, poorly con-
strained biological circuit models, and it is uniquely suited
for the task of kinetics-based network topology reconstruc-
tion and discrimination. The ENS method rests on the
realization that a great deal can be known about a network’s
observable kinetics, even if many of its rate coefficients
are poorly constrained or not known. The central idea of
ENS is then to forego reconstruction of one unique model
parameterization and to generate instead a statistical sample
of all such parameterizations that are consistent with the
data. ENS thus produces probabilistic predictions of the
network’s time evolution that enable us to discriminate
between competing hypothesized network topologies.

As a case study, we tested the methodologies described
above with the enzyme acetyl-coenzyme A (acetyl-CoA)
synthetase (ACS). ACS is a well-studied enzyme in bacteria
(12) and humans (13), and is required for the synthesis of
acetyl-CoA (AcCoA), a major cell metabolite. ACS has
been proposed to convert ATP and acetate to an enzyme-
bound intermediate (ACS/acetyl-AMP), and upon addition
of CoA to transfer the acetate to CoA to yield pyrophosphate
(PPi), AMP, and AcCoA (14). The enzyme has been charac-
terized to a lesser extent in plants. Using this enzyme as
a test system, we describe what to our knowledge is a new
procedure for investigating its activity by real-time NMR
analysis. A computational procedure is used to extract
NMR spectra of individual enzymatic compounds from
the complex, time-evolving, superimposed spectra. A simu-

lation procedure based on kinetic networks is then used
to discriminate among several hypothesized enzymatic
networks. It is hoped that this procedure will provide a novel
tool to identify interactions and control points in other
complex metabolic systems.

EXPERIMENTAL PROCEDURES

Preparation of Arabidopsis ACS samples

The methods used for gene cloning, protein expression, purification, and

characterization of enzymatic properties are described in the Supporting

Material. All other reagents were obtained from commercial sources.

Real-time 1H-NMR analysis of ACS

ACS reactions (180 mL final volume) were performed in a final mixture of

D2O/H2O (9:1 v/v) in 50 mM sodium phosphate, pH/pD 7.6, 5 mMMgCl2,

1.2 mMATP, 2.0 mMCoA, 1.0 mM acetate, and 12.5 mg recombinant ACS.

The enzyme was not exchanged with D2O, but was added in a small volume

of a similar protonated sodium phosphate buffer just before NMR moni-

toring of the reaction. Real-time 1H NMR spectra were obtained on a Varian

(Palo Alto, CA) direct-drive spectrometer system with a 3 mm cryogenic

probe operating at 600 MHz. Immediately upon addition of enzyme, the

reaction mixture was transferred to a 3 mm NMR tube and monitored

continuously by 1H-NMR spectroscopy at 37�C. The first spectrum was

acquired beginning 2 min after the addition of enzyme to the reaction

mixture, due to spectrometer setup requirements. Then 300 sequential 1D

proton spectra with water presaturated were acquired over a 90 min time

period under the following experimental conditions: 90� pulse, 2 s acquisi-

tion time, and 2 ms relaxation time. Each spectrum consisted of four

transients. For kinetic monitoring, all spectra were processed by Fourier

transformation after exponential weighting with 1 Hz line-broadening

and zero-filling to 64 k points. Spectra were referenced to the water reso-

nance at 4.765 ppm. Data were also processed using MATLAB code

(The MathWorks, Natick, MA) for deconvolution of superimposed peaks.

Details of this procedure are described in the Supporting Material.

Standards for compounds involved in the ACS reaction were prepared at

1 mM in a final mixture of D2O/H2O (9:1 v/v) in 50 mM sodium phosphate,

pH/pD 7.6, 5 mM MgCl2. The NMR spectra were acquired as described

above, except that each spectrum consisted of 16 transients instead of

four to achieve a better signal/noise (S/N) ratio.

Deconvolution of superimposed peaks

The mathematical details involved in deconvolution of the superimposed

peaks are described in the Supporting Material.

Extracting time-course variations of reactant
concentrations

Two methods were employed to calculate the time course of concentrations

of reactants for ENS: 1), conventional NMR resonance peak integration of

well-resolved diagnostic peaks with background subtraction (PIBS); and 2),

multiple peak spectral fitting (MPSF, described below). In the PIBS

approach, diagnostic peaks of interest were manually selected for each

metabolite from the time-series spectra, and the peak integration was per-

formed using procedures in Vnmrj (Palo Alto, CA). The concentrations

of each reactant were then calculated by normalizing the peak integral

values to the known initial concentrations of the starting materials.

In the MPSF approach, least-squares methods are used to fit the experi-

mental time-series data by a linear superposition of the aligned spectral
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standards, obtained from the nonnegative matrix factorization (NMF) align-

ment method described in the Supporting Material, with time-dependent

superposition amplitudes that are directly proportional to the desired

concentration time courses. The MPSF inputs are the time-series experi-

mental data matrix E, of dimension P � T, and the corresponding aligned

spectral standards S, represented as a matrix of dimension P � N. Here,

the time-series spectral data are restricted to spectral windows containing

peaks from the metabolites of interest, P denotes the total number of

NMR spectral frequency bins from all selected windows; T is the number

of observation times; and N is the number of aligned standards (i.e., the

number of individually observed metabolites), included in the linear super-

position. E and S are used to find the best-fitting metabolite concentration

time courses, T, represented as a nonsquare N � T matrix. That is, the

spectral time-series data are represented as E ¼ ST, and the matrix T of

the best-fitting concentration time courses is obtained as:

T ¼ ðETSðSTSÞ�1ÞT (1)

ENS of the metabolic network

The technical details are described in the Supporting Material, but in brief,

a statistical sample of parameterizations for a model (denoted as q) that is

consistent with the data is generated. Then probabilistic predictions of the

network’s time evolution are produced. The generation of large statistical

q-samples is achieved computationally by means of a Monte Carlo (MC)

random walk procedure in q-space. This random walk is guided by an

ensemble probability distribution Q(q) that favors q-choices that yield

model predictions consistent with (and disfavors q-choices inconsistent

with) the metabolic time-series data, as quantified by c2(q). The MC-aver-

aged converged c2-values are used to rank the models.

RESULTS

AcCoA synthetase from Arabidopsis

A truncated construct of the ACS from Arabidopsis was
cloned and expressed locally. A detailed characterization

of the enzyme is included in the Supporting Material.
Based on this characterization, the components to consider
in building network models are acetate, CoA, AcCoA,
ATP, AMP, ADP, PPi, phosphate (Pi), and any potential
intermediates.

Real-time NMR of the AtACS-catalyzed reaction

We first established that ACS activity can be monitored by
1H-NMR. The time course for ACS production of AcCoA
is presented in Fig. 1 A. It clearly shows that certain peaks
between 2 and 4 ppm are increased in size, whereas others
are reduced. The fact that the enzyme forms AcCoA is evi-
denced by the three diagnostic peaks belonging to protons
on the acetate-cysteamine-pantothenate (ACP) moiety of
AcCoA, the triplet signal at 3.04 ppm corresponding to
the two protons of AcCoA-ACP-H1000, the triplet signal at
2.5 ppm corresponding to the two protons of AcCoA-
ACP-H700), and the singlet signal at 2.4 ppm corresponding
to the three protons of the methyl group (AcCoA-ACP-
H1200), which rise as a function of time (Fig. 1 A). Peaks
corresponding to the acetate methyl protons (acetate-H1 at
2.0 ppm) and the two peaks diagnostic of the cysteamine-
pantothenate (CP) part of CoA (CoA-CP-H1000 at 2.72 and
CoA-CP-H700 at 2.55 ppm) are reduced simultaneously
during the enzymatic reaction. Selected portions of the
1H-NMR spectra corresponding to protons belonging to
the purine bases of ATP, AMP, CoA, and AcCoA provide
additional information related to the progression of the reac-
tion. One of the diagnostic peaks for the adenosine base of
AMP (AMP-Ade-H8 at 8.66 ppm) increases, whereas the
adenosine peak for ATP (ATP-Ade-H8 at 8.58 ppm)

FIGURE 1 Real-timemonitoringofACSforward

reaction by 1H NMR. The NMR-based assays, con-

sisting of ATP (1.2 mM), acetate (1.0 mM), CoA

(2.0 mM), and ACS (12.5 mg), were carried out

at 37�C in a 600 mHz spectrometer. The first spec-

trum was obtained ~2 min after the addition of

enzyme, and subsequently 299 spectra were

collected over a 70 min period. Representative

spectra in the time course are shown. Labeled

abbreviations: Ade (adenosine), Rib (ribose), ACP

(acetate-cysteamine-pantothenate). (A) A portion

of the 1H-observed, time-resolved spectra showing

ACSconversionofCoA toAcCoA(diagnostic peaks

of the protons belonging to the carbons of ACP

regions at 2.2–3.2 ppm). (B) A portion of the spectra

showingACS conversion of ATP toAMP asAcCoA

is synthesized (diagnostic peaks of the protons

belonging to the carbons of the adenosine base of

AMP or ATP at 8.4–8.7 ppm). (C) A portion of the

spectra showing ACS conversion of ATP to AMP

as AcCoA is synthesized (diagnostic peaks of the

protons belonging to the carbons of the ribose region

of ATP at 4.2–4.6 ppm). (D) A portion of the spectra

showing the ribose regions (6.19–6.32 ppm)

where peaks were not resolvable due to overlapping

signals from different molecular species.
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decreases as the enzyme converts more ATP, acetate, and
CoA to AMP and AcCoA (Fig. 1, B and C). Manual peak
assignment also shows a decrease in a peak belonging to
the ribose of ATP (ATP-Rib-H50 at 4.47 ppm). The time-
course behavior for other peaks from AcCoA (Rib-H10 at
6.23 ppm), CoA (Rib-H10 at 6.23 ppm), ATP (Rib-H10 at
6.23 ppm), and AMP (Rib-H10 at 6.23 ppm) in this region
is not immediately clear due to peak overlap (Fig. 1 D).
Although manual identification of select peaks is possible,
our purpose is to analyze NMR spectra using methods that
are less dependent on manual inspection, and to identify
additional peaks belonging to the same molecule so that
variations in the intensities of these peaks can improve the
precision of kinetic monitoring.

Mathematical deconvolution of superimposed
peaks

To deconvolve superimposed peaks from experimental
NMR data, the NMR spectra of individual metabolites
expected to occur in the time-series assay were acquired
at 1 mM. Compared with NMR-based enzyme reaction
assays, these individual-metabolite standard spectra are
usually of better quality (i.e., with a higher S/N ratio)
because nontime-varying data can be averaged over longer
periods of time to reduce noise. As explained in Experi-
mental Procedures, the standard spectral peaks must first
be aligned by NMF to match the locations of corresponding
spectral peaks in the metabolic time-series spectra before
they can be used to deconvolve the time-series spectra
into concentration time courses.

Fig. 2 illustrates the simplest variant of this NMF align-
ment, in which we use only one well-resolved, isolated
diagnostic peak that arises from only one single metabolite
(CoA in this case) and does not overlap with spectral weight
from any other metabolites. Fig. 2 A shows representative
time-series data for a target diagnostic peak of CoA
(CoA-CP-H1000). The asymmetric pattern of this peak is
due to the second-order distortion, which was also observed
in the CoA standard spectrum. Fig. 2 B shows a subset of the
shifted diagnostic peaks that we generated from the
observed CoA standard spectrum by applying small succes-
sive shifts in peak location. A rank-one variant of the NMF
optimization method (described in Experimental Proce-
dures) was used to find the best-fit amplitude vector a, which
represents the time-series diagnostic peak as a superposition
of the shifted diagnostic peaks generated from the standard.
This results in a sharp maximum in the amplitudes plotted
versus the diagnostic peak shift (Fig. 2 C), and identifies
the best alignment location (marked with an X in Fig. 2 C).
The corresponding shifted diagnostic peak of maximum
amplitude is best aligned with the target diagnostic peak
(Fig. 2 A) of the time series and it can be used as (part of)
the aligned spectral standard to represent CoA in an
MPSF deconvolution analysis of the spectral time series.

We assessed errors in the MPSF alignment procedure by
running the alignment algorithm 100 times and plotting
the alignment probability distribution. The distribution
widths (full width at half-maximum) averaged ~4 � 10�4.

By using this alignment procedure in the MPSF analysis,
we were able to incorporate a much larger number of spec-
tral peaks into the analysis, including nondiagnostic fre-
quency regions in which multiple metabolite standards
may have overlapped. We used the time-averaged spectrum
of the NMR time-series data to determine which frequency
windows to include in the fit by superposition of aligned
spectral standards, because this spectrum contained the
most abundant information. Some regions were excised
because they had no relevant peaks and contributed only
noise to MPSF fits. Other regions, such as the peak due to
H2O were also excluded. In Fig. 3, we plot two sets of

FIGURE 2 Determination of peak location. (A) A diagnostic peak

(CoA-CP-H1000) from the time-series spectrum of the ACS forward reac-

tion. The peak was used to find the best fit between the standard and the

NMR time-resolved diagnostic peak. (B) A library of representative shifted

diagnostic peaks (CoA-CP-H1000) from a premeasured CoA standard. For

clarity, in this panel only a subset of the full library of shifted peaks is

presented. The full library contains one shifted peak per grid point. (C) Esti-

mation of peak location using NMD. A single large spike (denoted with an

X) was picked out as the best fit of the location of the diagnostic peak. This

optimization procedure was then repeated 100 times using random initial

conditions to determine the probability distribution of alignment locations

(C, inset).
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spectral windows used for data fitting. In Fig. 3 B a set of
windows surrounding only the easier-to-fit diagnostic peaks
is depicted. Fig. 3 C depicts a set of spectral windows
surrounding more peaks, including windows that are unus-
able for standard peak integration methods because peaks
in these windows overlap significantly. Fig. 3, A and D,
show details of the spectral information in panels B and C.
The S/N ratio of fits increased as the number of peaks per
aligned standard increased. We will now describe this
MPSF method of first aligning the standards and then fitting
multiple peaks to the data in more detail.

First, all known initial reactants (CoA, acetate, and ATP)
were used to fit to the experimental data (Fig. 4, B and C).
When we compare the best fit with experimental data, it is
clear that a number of peaks (indicated by arrows) are unac-
counted for. AMP is expected to be a product of the reaction;
therefore, the initial reactants plus AMP were included to

obtain a new, better fit (Fig. 4, C and D). Because the
obvious remaining peak in the acetyl group is likely to be
the product AcCoA, this standard is also used in the fit.
The AcCoA standard also has a CP group and spectral
contributions from this group. Including these signals allows
for a better fit in both regions, further reducing the residual
(Fig. 4, D and E).

FIGURE 3 Choosing a location to perform peak fitting. (A) Detail of one

of the diagnostic windows. (B) Diagnostic peak (i.e., relatively isolated

peaks that are easy to distinguish from preacquired spectral standards)

windows (indicated by vertical bars) used for peak location determination

(using NMD) and an initial peak fitting analysis. Blue, AcCoA; red, acetate;

black, AMP; green, ATP; magenta, CoA; dotted blue line, time-averaged

spectrum from experiment. (C) A larger set of windows used for MPSF.

Vertical bars demarcate the spectral windows used. (D) Detail of a window

in which multiple peaks overlap. Once the exact location of the spectral

standards has been determined, the overlapping spectra in this window

are used to perform MPSF.

FIGURE 4 MPSF. (A) Average spectrum from experimental data.

Spectral windows used in data fitting are denoted by vertical black lines.

(B) Experimental data fit with spectral standards for the initial reactants.

The top traces in this panel are experimental data (gray). The bottom traces

show the actual standards at the fit amplitudes (red, acetate; green, ATP; and

magenta, CoA). (C) Experimental data fit with the product AMP (black).

The upper part shows the experimental data (gray) and the combined fit

of ATP, acetate, and CoA standards (dark green). Arrows point to the peaks

that are unaccounted for when spectra of ATP, acetate, and CoA are used to

fit the experimental data. The lower part shows the actual AMP standard at

the fit amplitude. (D) Experimental data fit with another product AcCoA

(blue). The upper part shows the experimental data (gray) and the combined

fit of ATP, acetate, CoA, and AMP standards (dark green). Arrows point to

the peaks that were left when spectra of ATP, acetate, AMP, and CoAwere

used to fit the experimental data. The lower part shows the actual AcCoA

standard at the fit amplitude. (E) Experimental data (gray) fit with AcCoA,

acetate, AMP, ATP, and CoA standards (dark green).
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To demonstrate the improvement in S/N ratio fromMPSF,
in Fig. 5 we compare the metabolite concentration estimates
of ATP and AMP for the two data-processing methods
(diagnostic NMR resonance PIBS and MPSF) using all of
the peaks in the windows shown in Fig. 3 C. Error bars
for the MPSF fit were generated as described in Experi-
mental Procedures. Note that the S/N ratio is improved
by an order of magnitude when the MPSF used the largest
set of spectral windows. With this method, the concentra-
tions of substrates and products were determined as a func-
tion of time and the results were used as input to reconstruct
the metabolic network of the ACS-catalyzed reaction.

Network reconstruction of the AtACS-catalyzed
reaction

Previous studies have examined the activity of ACS in detail
in both bacteria and vertebrate animals (14), and argued for
the existence of an enzyme-bound intermediate, acetyl-AMP.
Here we wanted to simulate a metabolic network for plant
ACS based on NMR data without a preconceived require-
ment for this intermediate. The ACS enzyme network must
at a minimum accommodate three substrates (ATP, acetate,
CoA), an enzyme (E), and three products (PPi, AMP, and
AcCoA), based on the assay derived by NMR and high-
performance liquid chromatography data. In addition, any
number of enzyme-bound intermediates or side products
(E/substrates, E/intermediates, E/products, intermediate, Pi,
and ADP) that cannot be observed or distinguished from
other metabolites in NMR analysis due to the limitations of
detection, are postulated and included into the network. In
the four model network diagrams shown in Fig. 6 A, each
compound is represented as a rectangular node, and each

forward-backward reaction step pair is represented as
a circular node. For clarity, the substrate and product flux
directions are indicated by arrows for forward reaction steps
only; for corresponding backward reaction steps, the arrow
directions are reversed.

Model 1 (Fig. 6 A) constitutes the simplest possible
mechanism for the conversion of ATP, acetate, and CoA into
AcCoAand PPi. It has just one single intermediate E/substrate
complex and one E/product complex. In contrast to other
possible models, model 1 neither allows nor requires the
production of additional intermediates in either an enzyme-
bound form or as a free molecule. In the other three models
(models 2–4), an acetyl-AMP intermediate (denoted by Q)
was introduced into the reaction network based on previous
studies of ACS from bovine, which suggested that animal
ACS-catalyzed reactions are carried out through an enzyme-
bound acetyl-AMP (15). It is possible that plant ACS also
follows the same reaction network. As shown in Fig. 6 A,
model 2 suggests that the release of acetyl-AMP from the
enzyme is required for reaction. In model 3, acetyl-AMP is
functional as an enzyme-bound intermediate for the entire
reaction. The release of acetyl-AMP is not required, but is
allowed as a nonessential side product. Such side products
could in fact hinder the enzymatic conversion if they were en-
dowed with a substantial rate coefficient. Model 4, which was
derived from model 3, required an enzyme-bound interme-
diate for the reaction. The difference between models 3 and
4 is that the substrates and products are incorporated or
released at different points along the pathway.

Each model was used to perform an ENS and predict the
time courses of concentrations of substrates and products
for comparison with each of the two sets of concentration
time-series data (one data set derived by the NMR software
integration program (PIBS), and the other by the MPSF
method as described in Experimental Procedures). Fig. 6
B and Fig. S2 A show how the ENS means for each model
fit the MPSF-processed time-series data for all metabolites.
To further demonstrate which model fits the experimental
data better, we calculated the residuals of each reactant
and enzymatic product by subtracting the ENS means
from the experimental data. As an example, the residuals
of AMP are plotted against time in Fig. S3. At most of the
time points, the residuals acquired from models 1 and 4
are larger than the ones obtained from models 2 and 3.
This result suggests that models 2 and 3 might give a better
fit to the experimental data than models 1 and 4. Fig. 6 C and
Fig. S2 B show the corresponding variations in the c2-func-
tion as the model parameter space is searched by the ENS
MC random walk process. As explained in the Supporting
Material, the c2 function measures the deviation between
model and data, and guides the random walk toward an
improved quality of fit. This random walk process is started
and restarted 20 times, each time with a new random model
parameter initialization. Convergence to similar c2-values
after most (re)starts supports the adequacy of the search

FIGURE 5 Improved S/N ratio of concentrations of metabolites obtained

by least-squares peak fitting. (Blue line) time course generated by PIBS

using NMR operation software Vnmrj (Palo Alto, CA). (Red/black lines)

MPSF using selected windows (Fig. 3 C). The black line denotes the

mean, and red lines denote 2-s error bars (see Experimental Procedures

for the error bar determination method). Fitting peaks in multiple windows

by MPSF gives an order of magnitude improvement in concentration

estimation.
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time. As explained in the Supporting Material, only (re)
starts that converged with an average c2 < cmax

2 ¼ 6000
are included in the ENS grand averages shown in Fig. 6 B
and Fig. S2 A. Model 1 provides a significantly worse fit
to the data than any of the other models, and model 3
provides a substantially better fit than all other models, for
both data sets. The fits by model 4 are worse than those of
model 2. The ENS c2 results thus clearly discriminate
between the four models in terms of quality of fit, and

suggest that model 3 is the most compatible with the data.
This indicates that the ACS-catalyzed reaction is carried
out through an enzyme-bound intermediate while allowing
for nonproductive release of the intermediate before CoA
addition. Further conceptual and technical details of the
ENS fitting and model discrimination procedure are dis-
cussed in the Supporting Material, including assessments
of statistical significance, and uncertainties in the under-
lying model parameterizations, as listed in Table S2.

FIGURE 6 Network reconstruction of the ACS-catalyzed reaction using the MPSF-processed data set. (A) Schematic representation of models 1–4 for the

ACS-catalyzed reaction. For clarity, only forward reaction steps are shown, but all corresponding backward reaction steps (with arrow directions reversed) are

included in each model, except for the backward step of ATP/ADP, which is treated as irreversible. E, enzyme; Q, acetyl-AMP. (B) Time course of concen-

trations of AMP and ATP show how the ENS results fit the MPSF-processed experimental data for different models. Dots represents the MPSF experimental

data, and solid lines represent ENS results by the ensemble mean (middle line) and uncertainty bands with two ensemble standard deviations around the mean

(upper and lower lines). (C) The c2-values of ENS MC random walk process versus the MC sweep number for the MPSF-processed data set with 6000 MC

sweeps, starting from a random rate coefficient (random q) MC initialization. One of 20 repetitions (restarts) of this MC process is shown in C.
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Overall, the c2-values for the PIBS-processed data set, as
shown in Fig. S2 B, are about a factor of 4 larger than those
of the MPSF-processed data for all four models, but the rank
ordering of the four models in terms of the best c2-values is
basically the same for both data sets. In an acceptable fit, c2

should be on the order of the number of experimental input
data points J, i.e., of order J ¼ 3878 and 2995 for PIBS
and MPSF, respectively. As shown in Fig. 6 C, only model
3 and (just barely) model 2 meet the acceptable-fit criterion,
and they do so only for the MPSF data set. This suggests that
the PIBS procedure may in fact introduce substantial addi-
tional systematic errors, possibly associated with poor base-
line representation in the commercial fitting and peak
integration software.

DISCUSSION

Because of its nondestructive properties, quantitative 1H
NMR is an ideal approach formonitoring real-timemetabolic
reactions in vitro or in vivo. Most previous studies relied on
the integration of well-defined peaks and ignored overlap-
ping peaks (7). It is well known that the accuracy of conven-
tional peak integration depends on how well the peaks are
isolated and how well the baseline has been corrected (8).
However, in most metabolic reactions, the overlapping peaks
contain critical information, and by ignoring them we sacri-
fice important opportunities to improve the precision of the
concentrationmeasurements and identification of underlying
compounds. The approach we developed here allowed us to
deconvolve overlapping peaks. By fitting a larger number
of peaks, we were able to achieve a much better S/N ratio
than we could have using traditional integration of only
well-resolved peaks. Furthermore, we were able to uncover
peaks from underlying previously unidentified metabolites.

The ENS method was developed to reconstruct kinetic
network systems from partial information. In this study,
using the time-course concentration variations of substrates
and products, we found that ENS favored a model in which
the plant ACS-catalyzed reaction was carried out through an
enzyme-bound intermediate. This result is in line with the
enzymatic mechanisms suggested for ACS enzymes from
other species (14).

It is important to note that selection among models does
not mean that the selected model represents a unique solu-
tion. Given the distinction among models 1–3, however, it
is appropriate to discuss how the data provided made this
distinction, especially in the absence of data regarding the
product PPi and the released intermediate product Q. In
model 1, the rate of product production will always depend
on the product of all three reactants (CoA, acetate, and
ATP). In model 2 or 3, there can be regimes in which acetate
and ATP saturate the enzyme and the rate of production will
depend only on the enzyme and CoA concentrations. It is
harder to see how models 2–4 are distinguished. However,
a possible explanation is that there is a disconnection in

the stoichiometry for production of the products AMP and
AcCoA from ATP and acetate in the actual experiment.
The difference is then accounted for by the release of Q as
a side-product in model 3. Since Q is not observed, it can
remain as Q at a level under the limit of the instrumental
detection, or it can be further degraded into unobservable
products whose signals might be obscured by those of prod-
ucts produced in other steps. For example, if acetyl-AMP is
the intermediate, it might dissociate in the actual experiment
into AMP and acetate (one of the starting materials and one
of the products of the overall reaction) without the produc-
tion of AcCoA. This dissociation process is not included in
either model, but model 3 has greater flexibility to reproduce
the net effect of this process on the stoichiometry by
releasing Q as a side-product without unduly constraining
the rate coefficients for the main ACS conversion pathway.

CONCLUSIONS

The procedures described above are broadly applicable to a
variety of metabolic processes. Although the proton NMR
methodology described is a nearly universal means of moni-
toring participants in enzyme-catalyzed reactions, it is not
completely universal, in that we did not detect nonprotonated
participants such as PPi. However, it is possible to carry out
31P observation, and recent instrumental advances have
provided the means of doing this simultaneously with 1H
observation (16). There are also obvious improvements that
can be made to our method, one of which is the development
of a more integrated data-reduction, network-analysis proce-
dure. The data-reduction procedure will also benefit from the
development of metabolite databases. Studies to that end are
already under way in other laboratories (17,18). Network
analysis is also not limited to single enzymes, and modeling
of coupled enzyme systems is certainly possible. Extensions
of the NMF and ENS methods can deal effectively with
incomplete data sets in which time series have been observed
only for a subset of metabolites (9–11,19). The ENS
approach presented here assumes that a candidate set of fixed
model network topologies is provided as a known input into
the simulation. The method can be extended to deal with and
extract topological information for systems of partially
unknown network topology. The limitations and possible
extensions of both NMF and ENS are discussed further in
the Supporting Material. Future applications even to
whole-cell systems can be anticipated.
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